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With the recent advent of new recording devices and an easier access to signal
processing tools, researchers are increasingly exploring and studying the Pupil Dilation
(PD) signal. Recently, numerous studies pointed out the relations between PD dynamics
and psychophysiological states. Although it is well known that PD is controlled by
the Autonomic Nervous System (ANS), and ANS responses are related to emotional
events/stimuli, the relationship between emotional states and PD is still an open issue.
The aim of this study is to define the statistical properties of the PD signal, to understand
its relation with ANS correlates such as Heart Rate Variability (HRV) and respiration (RESP),
and to explore if PD could provide information for the evaluation of the psychophysiological
response of ANS to affective triggering events. ECG, RESP, and PD data from 13 normal
subjects were recorded during a memory recall paradigm, and processed with spectral
and cross-spectral analysis. Our results demonstrate that variability indices extracted from
fast PD oscillations, not observable through standard cardiorespiratory identification in the
frequency domain, would be able to discern psychophysiological responses elicited by
basic emotional stimuli. A strong linear coupling was found between the variables, due to
the influence of RESP on both PD and HRV within the High Frequency (HF) band, from
0.15 to 0.45 Hz. Most importantly, our results point at PD features as possible candidates
for characterizing basic emotional stimuli.

Keywords: pupil dilation (PD), heart rate variability (HRV), autonomic nervous system (ANS), emotions,

reconstruction, spectral analysis, very high frequencies, coherence analysis

1. INTRODUCTION
The Autonomic Nervous System (ANS) primarily innervates the
smooth musculature of all organs, the heart and the glands,
and mediates the neuronal regulation of the internal environ-
ment to keep a proper balance, a process in general not under
direct voluntary control (Jänig, 1989). The existence of a rela-
tion between psychophysiological states and ANS activity has
been widely documented (Ekman et al., 1983; Levenson et al.,
1990; Collet et al., 1997; Christie and Friedman, 2004). On the
other hand, Cacioppo et al. (2000) performed a meta-analysis
of physiological responses to affective states and claimed that
the scientific literature has presented inconclusive evidence-based
results supporting the existence of specific patterns of periph-
eral activity as effected by emotional stimuli. However, it has
been shown that ANS indices show specific activation during par-
ticular emotional events, and negative emotions are in general
associated with more evident bodily responses when compared
with positive ones. More recently, Rainville et al. (2006) showed
that, under specific experimental conditions, it would be possi-
ble to differentiate emotions. Moreover, Stephens et al. (2010)
supported the hypothesis that patterns of autonomic correlates,
rather than single measurements, would lead to more specific
and discernible emotional responses. Although these findings

address a link between ANS and emotional events, it is still a
debated question whether the ANS activity is driven by cogni-
tive elaboration of the emotional event (James, 1894; Damasio,
1994; Levenson, 2003) or vice versa (Cannon, 1927; Arnold,
1960; Schachter and Singer, 1962). For a complete review of
the recent contributions to the debate, see Lowe and Ziemke
(2011).

The Sympathetic Nervous System (SNS) and the
Parasympathetic Nervous System (PNS) both innervate the
heart (Berntson et al., 1997). The Electrocardiogram (ECG)
is one of the most distinct and accessible signal related to
the heart function, widely used for psychophysiological pur-
poses (Cacioppo et al., 2007). From the ECG is possible to
define the RR series, which is the series of the time intervals
of consecutive R-waves (Camm et al., 1996). The elicited
heartbeat variations of the RR series have been defined as
Heart Rate Variability (HRV) and extensively studied in the last
decades (Camm et al., 1996). An important element driving
HRV is Respiratory Sinus Arrhythmia (RSA). RSA is a natural
variation in heart rate due to respiratory influences, mediated
by vagal cardiac nerve (Katona and Jih, 1975). RSA provides an
indirect and non-invasive measure of parasympathetic cardiac
control, typically occurring in the High Frequency (HF) band
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in the frequency-domain transform of the RR series. Slow
HRV oscillations in the Low Frequency (LF) band are influ-
enced by both vagal and sympathetic activity (Berntson et al.,
1997).

One of the most recent ANS correlate introduced in scientific
literature is Pupil Dilation (PD) (Beatty and Lucero-Wagoner,
2000; Lanata et al., 2011). The pupillary response, whose neural
pathways are mediated by the ANS, is determined by the activity
of two smooth iris muscles: PNS innervates the sphincter pupil-
lae and controls the pupillary constriction, whereas SNS causes
the excitation of the dilator pupillae (Beatty and Lucero-Wagoner,
2000). The major role of these muscles is to adjust the amount of
light allowed to enter the eye according to the surrounding illu-
mination level, a phenomenon called Pupillary Light Reflex (Ellis,
1981), the most widely studied and reported PD function. On
the other hand, spontaneous pupillary fluctuations (SPF) occur
in permanent lighting and eye fixation conditions as well. SPF
represent a dynamical equilibrium modulated by autonomous
and central nervous systems (Nowak et al., 2008), and have been
shown to reflect cognitive and affective processes (Andreassi,
2000). Borgdorff (1975), after having performed experiments
in which he showed the existence of respiratory pupil fluctu-
ations in cats, proposed a physiological model by which the
respiratory and pressure signals influence PD dynamics. Different
pupillary responses were observed with respect to different cog-
nitive stimuli (Steinhauer et al., 2004). Calcagnini et al. (2000),
after having performed a cross-spectral analysis, reported that
baroreceptor-sensitive fluctuations are visible in PD dynamics
during a Head-Up Tilt test. The relation between PD dynamics
and psychophysiological states was pointed out first by Partala
and Surakka (2003) and subsequently by Bradley et al. (2008).
Both these studies reported that variations of PD are related to
autonomic activation during affective processing. However, PD
fluctuations during emotional events have not been adequately
explored.

The aim of this study is to apply mathematical methods to
process PD dynamics during an emotionally characterized pro-
tocol in order to define descriptive statistical indices of PD and
to explore their relation with ANS correlates such as HRV and
respiration (RESP). In addition, we verify if PD could pro-
vide information in the evaluation of ANS responses during a
psychophysiological affective protocol.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL PROTOCOL
Personal feelings are proved to produce large responses in mea-
surements based on self-reports or physiological features (Bond,
1998; Mauri et al., 2010). The presented experimental protocol
is inspired by previous works (Rainville et al., 2006; Mauri et al.,
2012), in which a memory recall paradigm of emotionally charac-
terized autobiographical episodes was successfully used to trigger
the physiological response of the ANS.

The target emotions were chosen within the classical discrete
categorical model of emotions, according to which they are rep-
resented as discernible but fuzzy bounded entities (Russell, 1980;
Lang, 1995; Valenza et al., 2012). We selected promptly under-
standable emotions to avoid to mislead the subjects. Moreover,

the arousal and valence1 values of the target emotions should have
been as high as possible. Therefore, the target emotions consid-
ered in this work are “Happiness,” “Sadness,” and “Anger.” They
are compared with a reference event, i.e., a resting period termed
“Baseline.”

Healthy volunteers were recruited from the student body of
IULM University of Milan. The subjects did not suffer from men-
tal pathologies. The experimental protocol was divided in two
phases. In the first phase, subjects were scheduled for an inter-
view where they were asked to recall and loudly tell two recent
autobiographical episodes for each of the target emotions. Then
the psychologist, in agreement with the subject, chose the most
vivid and intense episode for each target emotion. These episodes
are then used in the second phase, as described below. In Table 1
we report the most common episodes recalled by the subjects, for
each target emotion.

Subjects who could not recall vivid recent episodes for each
of the target emotions were excluded from the second phase of
the experimental protocol. In total, 13 subjects participated in
the second phase of the experiment: they were scheduled for a
second appointment and admonished not to consume coffee or
caffeinated products at least 4 h before it.

The second phase of the experiment is the recording session,
during which the subjects were helped in recalling the same auto-
biographical episodes chosen with the psychologist during the
first phase of the experiment.

Figure 1 shows a graphical representation of the recording ses-
sion protocol. The session started with a 3 min long “Baseline”
condition, during which the subject was instructed to sit quietly
and to clear his/her mind of thoughts, feelings, and memories.
Hereafter, the recall of the autobiographical episodes could begin.
For each target emotion, the psychologist drove the subject in
the recalling of the autobiographical episode. This phase lasted
approximately 2 min. When the subject confirmed he/she was
re-experiencing the emotion, the psychologist asked him/her to
continue the recall of the episode, to refrain from speaking and
to keep the gaze on the monitor for the next 3 min, during which
the physiological data were recorded. After the recall, a washout
period of at least 3 min was provided before starting the recall

Table 1 | Descriptions of the most common autobiographical

episodes the subjects recalled during the first phase of the protocol

for each target emotion.

Target Episodes

emotion

Happiness To meet a close relative, a friend, or partner after a long time;

an important sport success

Anger To be cheated on; to fail a test or a school exam

Sadness The grief for the death of a close relative or a friend; the end

of a love affair

1The valence represents the degree of pleasure or displeasure an event or a
stimulus is able to elicit. The arousal determines the degree of activation in
response of an event or a stimulus (Lang, 1995).
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FIGURE 1 | A graphical representation of the protocol. After the
recording of the “Baseline,” the recall of the first autobiographical
episode could start. For about 2 min the subject was helped in recalling
the emotional even. Once he/she re-experienced the target emotion, a
3 min long recording of physiological data was performed. Finally a

washout period of at least 3 min was provided before starting the recall
of the next emotional episode. The same procedure was repeated for
each target emotion. The recording phases are indicated by red
segments, while the phases during which no recording was performed
are indicated by gray dotted segments.

of the next emotional episode. During the washout period the
subject was asked to relax and to clear again his/her mind. The
sequence of the emotional episodes to recall was randomly sorted
for each subject.

2.2. PHYSIOLOGICAL MEASURES
The subjects were asked to sit in front of the SensoMotoric
Instruments RED250™ Eye-tracker monitor provided by a color
gray screen at a fixed distance of 70 cm, in a room with con-
stant illumination conditions. The PD signals were recorded at
a sample frequency of 250 Hz; prior to start the “Baseline” and
the single emotion recalls, calibration of the eye-tracker was
performed. For computation purposes, the signals were then
low-passed and resampled at 50 Hz.

ECG and the RESP signals were recorded using a Flexcomp
Infinity™ encoder (Thought Technology Ltd.; Montreal, Canada)
at a sampling rate of 2048 Hz, then resampled at 256 Hz. Relative
changes in thoracic expansion were measured using a band pro-
vided with a tension-sensitive latex transducer; the thoracic band
was placed over the upper part of the chest, individually adjusted
to produce the maximal deflection during normal breathing; in
the pre-experimental phase the subject was asked to exhale and
inhale in a sealed reservoir bag: this procedure was designed
to calibrate the RESP signal and to cancel the effects of the
differences due to the band positioning and to the different tho-
racic expansions among the subjects. ECG was recorded using
a standard 3 leads montage (Einthoven lead 2 configuration)
on the right and left forearms. R-waves were detected and cor-
rected from ectopic beats with a specific detection and correction
program (Citi et al., 2012). Physiological data were not continu-
ously recorded during the second phase of the experiment. The
recording epochs are highlighted in Figure 1.

2.3. PUPIL DILATION ANALYSIS
Before performing the PD Analysis, a PD Reconstruction phase
was needed to fill the missing data due to eye-blinking events and
artifacts, to obtain an evenly sampled signal. Eye-blinking events
were automatically recognized by the eye-tracker and reviewed
offline to correct misdetection or missed events. A temporal win-
dow from 100 ms before to 100 ms after each eye-blinking event
was clipped from the data (Einhäuser et al., 2008), and a gap of
missing data in the PD series was created. These missing segments

were then reconstructed before further computation. The recon-
structed signal was then analyzed in both time and frequency
domain, to extract the characteristic features.

2.3.1. Pupil dilation reconstruction
An iterative method based on Singular Spectrum Analysis (SSA),
called Iterative-SSA, was implemented to fill the gap generated on
a PD signal by blink events (Sassi et al., 2009; Onorati et al., 2012).

The SSA is a powerful signal processing technique introduced
by Broomhead and King (1986) to decompose the original series
into a sum of independent and interpretable components such
as slowly varying trend, oscillatory components and structureless
noise. In summary, the algorithm embeds a one-dimensional time
series x(tn) in a M-dimensional vector series.

Once the dimension M for the embedding is chosen, the M-lag
correlation matrix Cx is computed from the time series x(tn) as

Cx = 1
N−|i−j|

N−|i−j|∑
n = 1

x(tn)x(tn +|i − j|) with 0 ≤ ∣∣i − j
∣∣ < M .

(1)
A singular value decomposition (SVD) is carried on Cx and
hence the eigenvectors, or Empirical Orthogonal Functions
(EOF), are obtained. The time-series x(tn) is projected onto
them, producing M principal components PC of length
(N − M + 1).

PC(tn) =
M∑

j = 1

x(tn + j)EOFl(j) with 0 ≤ n ≤ N − M , (2)

The original time series is expanded in an optimal way as the sum
of its M reconstructed components RC(tn) (Vautard et al., 1992),
defined as

RC(tn) = 1

M

M∑
k = 1

PC(tn − k)EOF(k). (3)

The choice of M is a key problem. Since dynamics with peri-
ods longer than M cannot be solved, the greater M, the longer
are the time intervals that can be reconstructed. Moreover, the
spectral resolution is limited to 1/M, which suggests the choice
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of a M as large as possible. On the other hand, a M too large
would cause the splitting of a single component in two or more
components (Vautard et al., 1992) and increase computational
burden.

For the estimation of missing data of the time series,
Schoellhamer (2001) and Sassi et al. (2009) suggested to set M
to the width of the gaps to be filled. Therefore M was set to the
maximum width of the gap in the series (including not only eye-
blinking events but also artifacts due to misalignment between
pupil and sensor) which resulted of width Lgap = 3 s (on aver-
age across subjects), that is M = fs · Lgap = 150, where fs is the
sampling frequency.

Figure 2 shows an example of the reconstruction performed
using the Iterative-SSA algorithm.

2.3.2. Time domain analysis
As previous studies reported a spectral content for the PD signal
up to 4–5 Hz (Nakayama and Shimizu, 2004), we low-passed and
resampled the reconstructed PD signal at 10 Hz. Temporal aggre-
gate statistical indices were computed: the mean value μ of the
PD signal, its standard deviation σ and the coefficient of variation
cv, i.e., the ratio between the standard deviation σ and mean μ.

2.3.3. Spectral analysis
A parametric spectral analysis, via autoregressive (AR) model
coefficients estimation was performed to compute the spectral
components. The order of the model was chosen according to
the Akaike Information Criterion (AIC) (Akaike, 1974) and a
spectral decomposition procedure was applied to calculate each
component of the the Power Spectral Density (PSD) of the sig-
nal (Zetterberg, 1969). We referred to the standard measurements
of HRV generally used in both psychophysiological and clinical
settings (Camm et al., 1996). The power of each PD rhythm was

FIGURE 2 | An example of the reconstruction of Pupil Dilation signal

with the Iterative-SSA algorithm for the subject “sbj15,” during

“Sadness”.

summed within the corresponding frequency bands, i.e., LF, from
0.04 to 0.15 Hz, and HF, from 0.15 to 0.45 Hz (Camm et al.,
1996). To explore the frequency contributions from 0.45 up to
5 Hz, which we term as very high frequency (VHF), a high-pass
filter was applied with a cutoff frequency at fc = 0.2 Hz, to elim-
inate the dominant contributes from lower frequency content.
Based on the observation of the PSD high frequency contents, we
considered the following frequency bands: [0.45–1], [1–2.5], and
[2.5–5] Hz, termed, respectively as VHF[0.45–1], VHF[1–2.5], and
VHF[2.5–5]. Absolute powers were computed for each band.

2.3.4. Cross-spectral analysis
Given two time series x1(t) and x2(t) of length N, a system
describing their mutual interactions can be expressed in the form
of a bivariate autoregressive (AR) model

X(t) = −
p∑

k = 1

A(k)X(t − k) + w(t), (4)

where X(t) is the vector time series [x1(t) x2(t)], p is the order of
the model, w(t) is a vector of white noises and A is the matrix of
the AR coefficients, estimated along with the covariance matrix �

of the input noise

� =
[

σ2
11 σ12

σ21 σ2
22

]
. (5)

To compute w(t), A and � we used the Levinson–Wiggins–
Robinson algorithm (Wiggins and Robinson, 1965; Barbieri et al.,
2001) to solve the Yule–Walker equations. The order of the
bivariate model was chosen according to the Akaike Information
Criterion (AIC) (Akaike, 1974).

Once the AR coefficients and the covariances are obtained, it is
possible to estimate the cross-spectral matrix S(f ) as

S(f ) = H � HH H(f ) = (I − A(f ))−1 . (6)

where the superscript H indicates Hermitian transpose and A(f )
is the Fourier Transform of A(k).

Estimated the auto-spectra Sx1(f ) and Sx2(f ) and the cross-
spectrum Sx1,x2(f ), it is possible to compute the Coherence
γ2(f ) as

γ2(f ) =
∣∣Sx1,x2(f )

∣∣2

Sx1(f ) Sx2(f )
, (7)

and the normalized squared Directed (Causal) Coherence
(nDCji) from channel i to channel j as

nDC(f )ji =
∣∣Hji(f )

∣∣2

Sjj(f )
. (8)

Finally, according to a bivariate closed-loop model (Barbieri et al.,
2001), the causal gains Gi→j are calculated as

G(f )i→j =
∣∣∣∣ A(f )ji

1 − A(f )jj

∣∣∣∣ . (9)
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PD signals were sampled at the occurrences of the R-waves.
The Coherence functions γ2 between the signals were computed
by Equations (6) and (7).

For assessing the significance zero level of the Coherence
(and for nDC) a surrogate data analysis procedure was per-
formed (Faes et al., 2004, 2009): N = 200 couples of surrogate
series (Schreiber and Schmitz, 2000) were generated from the
original series via an Unwindowed Fourier Transform (UFT)
algorithm (Theiler et al., 1992); the aim of the UFT surrogate
procedure is to preserve the spectrum information of each time
series, but to completely destroy the phase correlation between
them; the Coherence and the nDC were then computed between
each of the 200 pairs of surrogate series and the relative sam-
pling distributions were obtained at each frequency; the zero
thresholds γ2

θ and nDCji, θ were set at the 95th percentile at each
frequency.

The corresponding value of causal gains are evaluated at the
frequency values of the peaks of nDC.

2.3.5. Statistical analysis
We computed all the above indices from segments long at
least 90 s for the available signals (PD, RR, RESP) during the
“Baseline” condition and the three emotional events “Happiness,”
“Anger” and “Sadness”. For each index and epoch, we performed
a Lilliefors test (Lilliefors, 1967), to verify if the hypothesis of
normality could not be rejected. We chose to perform non-
parametric tests because of the low number of the subjects,
and the presence of high variance and possible outliers on data,
as obtained performing a Grubbs’ test (Grubbs, 1969). For the
analysis of variance we performed a Friedman test (Friedman,
1937). As post-hoc analysis, we performed the Wilcoxon signed
rank test (Wilcoxon, 1945), to test the differences between the
“Baseline” and each emotional event. For the analysis of Gains,
we used the Kruskall–Wallis one-way test. To offset the impact
of multiple comparisons, a Bonferroni correction was applied to
the level of significance: as we were interested only in differences
between “Baseline” and the other psychophysiological conditions,
and considering the level of significance for the whole family of
tests αfamily = 0.05, the level of significance of each individual test
is α = αfamily/n, where n = 3.

2.3.6. Discriminant analysis
We performed a discriminant analysis to test the ability of the
most relevant indices to potentially distinguish “Baseline”from
the emotionally characterized events. We computed true positive
rate (TPR) and false positive rate (FPR) varying the discriminant
threshold. Statistical indices such as Sensitivity (Se = TPR) and
Specificity (Sp = 1-FPR) were then obtained.

3. RESULTS
3.1. PRELIMINARY STATISTICS OF THE PUPIL DILATION SIGNAL
Table 2 shows the temporal PD indices obtained on the analyzed
population.

We observe a decrease of the overall variability during trigger-
ing events. The reduction of σ, although not significant, occurs
during emotional events regardless of mean pupil size μ, which
is possibly dependent on other causes, such as accommodation

or brightness level. As a consequence, the cv is higher for every
emotionally characterized events. However, Friedman test did not
show any inter-groups effect.

3.2. PD AND CARDIORESPIRATORY ANS CORRELATES
3.2.1. Spectral analysis
Table 3 reports the obtained data for cardiorespiratory indexes.

The Friedman test didn’t show any statistical significance
among the psychophysiological conditions in the cardiorespira-
tory features presented in Table 3. The trends of the considered
indices reveal a highest sympathetic activation (vagal withdrawal)
for the emotional events: an increase in the LF component was
observed simultaneously to a decrease in the HF component.
Accordingly, an increase in the LF/HF ratio was observed.

PD spectral indices at both low frequencies (LF and HF)
and high frequencies (VHF) are shown in Table 4 for all the
experimental conditions.

Notably, according to the Friedman test, there are significant
inter-group differences due to the different experimental condi-
tions for HFPD [F(3, 36) = 3.943, p-value < 0.05], VHF[0.45–1]
[F(3, 36) = 3.943, p-value < 0.05] and VHF[2.5–5] [F(3, 36) =
3.457, p-value < 0.05] indices. Overall we can observe a decrease
in total power, as well as in each frequency band, for all emotional
events. As it is depicted in Figure 3, at VHF[2.5–5] this trend is
more marked, showing a highly significant difference (p-value <

0.016) between “Baseline” and “Anger”.
Similarly, the absolute power in both LF and HF bands shows

a clear decrease. In particular, this decrease is statistically signifi-
cant (p-value < 0.016) for “Anger” at HF. It can be noticed that the
trends of the PD power indices in normalized units show similar
behavior to their cardiac counterpart, as shown in Figure 4. There
is an evident decrease in the HF power in normalized units and an

Table 2 | Mean values and standard deviations (mean ± standard

deviation) of temporal indices of PD.

Baseline Happiness Anger Sadness

μ 3.998 ± 0.397 3.981 ± 0.451 3.916 ± 0.498 3.990 ± 0.460

σ 0.282 ± 0.057 0.240 ± 0.051 0.237 ± 0.073 0.239 ± 0.070

cv 0.071 ± 0.015 0.061 ± 0.013 0.060 ± 0.017 0.060 ± 0.015

Table 3 | Mean values and standard deviations (mean ± standard

deviation) of cardiorespiratory indices.

Baseline Happiness Anger Sadness

RR

μRR 0.826 ± 0.115 0.811 ± 0.111 0.805 ± 0.121 0.797 ± 0.104

LF norm 0.453 ± 0.139 0.532 ± 0.250 0.588 ± 0.246 0.570 ± 0.185

HF norm 0.418 ± 0.203 0.352 ± 0.280 0.271 ± 0.248 0.260 ± 0.243

LF/HF 1.281 ± 0.556 4.550 ± 9.251 8.370 ± 14.070 5.775 ± 6.998

RESP

fRESP 0.271 ± 0.060 0.262 ± 0.093 0.267 ± 0.092 0.241 ± 0.110

σ2 0.012 ± 0.023 0.020 ± 0.038 0.020 ± 0.042 0.028 ± 0.059

HF% 0.765 ± 0.157 0.656 ± 0.281 0.752 ± 0.188 0.536 ± 0.278
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Table 4 | Mean values and standard errors for all the different spectral indices of the PD.

PD Baseline Happiness Anger Sadness

LFPD 0.030 ± 0.023 0.023 ± 0.017 0.026 ± 0.026 0.019 ± 0.013

LFPD norm 0.467 ± 0.189 0.465 ± 0.148 0.490 ± 0.213 0.459 ± 0.161

HFPD 0.016 ± 0.010 0.012 ± 0.007 0.010 ± 0.007* 0.010 ± 0.007†

HFPD norm 0.313 ± 0.223 0.319 ± 0.214 0.216 ± 0.075 0.275 ± 0.160

LF/HFPD 2.268 ± 1.677 2.851 ± 3.336 3.019 ± 3.486 2.400 ± 2.141

VHF[0.45–1](*10−2) 0.464 ± 0.192 0.486 ± 0.378 0.374 ± 0.260 0.425 ± 0.293

VHF[1–2.5](*10−2) 0.204 ± 0.115 0.204 ± 0.204 0.158 ± 0.137 0.208 ± 0.182

VHF[2.5–5](*10−3) 0.484 ± 0.174 0.442 ± 0.190 0.348 ± 0.212† 0.409 ± 0.214

A asterisk (*) indicates a p-value < 0.05, while a dagger (†) indicates a p-value < 0.016. Statistically significant differences were bold typed.

FIGURE 3 | Means and standard errors of VHF[2.5–5].

FIGURE 4 | Mean values and standard errors of the HF power (left)

LF/HF ratio (right) for both PD (plots at the top, in blue) and HRV

(plots at the bottom, in red).

increase of the LF/HF ratio during the emotional events, partic-
ularly during “Anger,” although there is no significant difference
among these PD indices.

3.2.2. Coherence analysis
An example of Coherence analysis between PD, RR intervals and
RESP is presented in Figure 5. The analysis between PD and the

RR signal is shown on the left, while the analysis between PD and
RESP is on the right.

In Table 5 the Coherence computed at the considered fre-
quency bands is reported for each experimental condition, along
with the number of subjects showing Coherence above threshold.
For the Coherence between PD and the RR signal we considered
two frequency bands, i.e., LF and HF; for the Coherence between
PD and RESP, only the HF band was taken into account.

As an overall results, it is possible to see that during “Baseline”
the average Coherence shows higher values at HF and lower val-
ues at LF. The Coherence analysis between PD and the RR signal
shows on average 4 Coherences above threshold in the LF band
out of 13 subjects. In the HF band we reported 10 subjects out of
13 showing a Coherence above threshold during “Sadness,” and 9
subjects out of 13 during “Happiness” and “Anger”. For “Baseline”
we found an above threshold Coherence in the HF band for 4 sub-
jects out of 13, even though the average Coherence is higher than
the other conditions: this result might be due to the method used
to assess the significance zero level, which in some cases seems
to be too conservative. In the analysis between PD and RESP, a
higher Coherence has been reported (10 out of 13 above thresh-
old for “Baseline,” “Anger,” and “Sadness,” and 9 out of 13 for
“Happiness”).

We computed also the nDC and the Gain of the related transfer
functions. A graphical representation of the performed analysis is
in Figure 6 while numerical results are presented in Table 6.

Only GRESP→PD shows significant differences [F(3, 36) = 4.9,

p-value < 0.05] within groups. The post-hoc analysis reveals sig-
nificant differences between “Baseline” and “Happiness” (p-value
< 0.016). This index is the only bivariate index showing high sig-
nificance for the experimental conditions of our protocol, and
it’s the only one which distinguishes emotional states with an
opposite connotation. The results of the analysis between PD and
the RR signal indicate weak coupling. At LF the rate of subjects
showing nDC above threshold for both the transfer functions was
low and in some conditions none of the subjects showed above
threshold nDC (results not shown). At HF no clear directional-
ity in the linear coupling can be stated: nDC is above threshold
on average for the same number of subjects for both the trans-
fer functions. As expected, in the analysis for PD and RESP, a
higher number of subjects shows nDCRESP→PD above threshold.
Moreover, GRESP→PD shows an interesting trend in Figure 7: once
compared with GRR→RESP, GRESP→PD shows higher values during
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FIGURE 5 | Coherence analysis for PD and RR signal for the

subject “sbj05,” during “Anger” event (left), and coherence

analysis for PD and RESP for the subject “sbj15,” during

“Happiness” event (right). On the first row, the PSD of RR (left)

and RESP (right) are depicted; on the second row, the PSDs of the
PD for the two analysis are shown; on the third row, the plots show
the Coherence between RR series and PD (left), and the Coherence
between RESP signal and PD (right).

Table 5 | Mean values and standard errors of Coherence and number of subjects showing Coherence above statistical threshold.

γ̄2 (s.d.) Nθ/N Baseline Happiness Anger Sadness

RR-PD, LF 0.502 ± 0.157 0.559 ± 0.225 0.547 ± 0.172 0.491 ± 0.213

3/13 4/13 5/13 4/13

RR-PD, HF 0.647 ± 0.136 0.574 ± 0.133 0.625 ± 0.129 0.612 ± 0.124

4/13 9/13 9/13 10/13

RESP-PD 0.688 ± 0.128 0.605 ± 0.146 0.617 ± 0.174 0.636 ± 0.192

10/13 9/13 10/13 10/13

RR-RESP 0.888 ± 0.145 0.858 ± 0.113 0.774 ± 0.217 0.860 ± 0.083

12/12 4/12 5/13 13/13

We indicated with γ̄ 2 the mean value of the Coherences; with s.d. the standard deviation of the Coherences; with Nθ /N the rate of the subjects showing Coherence

above statistical threshold.

“Happiness” with respect to the other conditions, in particular to
“Anger” and “Sadness”.

We noticed that HFPD and GRESP→PD cluster and separate
the different experimental conditions (see Figure 8). While HFPD

shows a correlation with general activation, GRESP→PD decreases
at negative events and increases at the positive one: this finding is
key for a prospective classification of different emotional events.
A two-dimensional plot of the means and the standard errors
of HFPD and GRESP→PD is shown in Figure 8, representing the
experimental conditions considered in our protocol.

3.3. DISCRIMINANT ANALYSIS
In accordance to the results just presented, we chose the indices
with highest statistical power. In Table 7 Se and Sp of the discrim-
inant analysis are reported. The chosen indices were HF power in
normalized units and LF/HF ratio for RR signal, and HF absolute

power, VHF[2.5–5] and GRESP→PD for PD. Also a linear com-
bination of the PD indices, whose weights were obtained by a
Principal Component Analysis (PCA), was included in the anal-
ysis: this feature obtained overall good performances, mostly in
term of Sensitivity. This result suggests that including PD indices
in emotionally characterized or stressful contexts might help to
distinguish arousing events from resting conditions.

4. DISCUSSION
This work focuses on mathematical methods for PD signal pro-
cessing aimed at estimating novel markers of autonomic activity
and investigates PD dynamic changes during a psychophysiolog-
ical study, in particular during emotionally characterized events
compared with a general relaxation/deactivation condition. The
analysis was performed through the following multiple steps: (1)
we implemented an ad hoc reconstruction of the signal to recover
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FIGURE 6 | nDC analysis between RESP and PD for the subject

“sbj11,” during “Baseline” event. The Coherence between RESP
and PD is depicted on the top; in the middle we have the
normalized direct Coherence considered from PD to RESP, i.e.,

nDCPD→RESP (left), and the normalized direct Coherence considered
from RESP to PD, i.e., nDCRESP→PD (right); in the bottom the plots
show the Gains for the respective transfer function, i.e., GPD→RESP

(right) and GRESP→PD (left).

Table 6 | Mean values and standard errors of the nDC and the Gain of the transfer function, and the number of subjects showing nDC above

statistical threshold.

nDCi→j (s.d.) Gi→j Nθ/N Baseline Happiness Anger Sadness

RR → PD, HF 0.797 ± 0.054 0.623 ± 0.065 0.722 ± 0.121 0.646 ± 0.103

1.496 6/13 2.366 7/13 1.498 5/13 1.942 8/13

PD→RR, HF 0.685 ± 0.139 0.614 ± 0,180 0.706 ± 0.090 0.711 ± 0.146

0.171 6/13 0.124 7/13 0.374 6/13 0.193 6/13

RESP→PD 0.756 ± 0.143 0.626 ± 0.167 0.662 ± 0.168 0.657 ± 0.145

0.780 10/13 1.398† 9/13 0.735 9/13 0.612 8/13

RESP→RR 0.927 ± 0.071 0.879 ± 0.101 0.841 ± 0.201 0.904 ± 0.082

0.434 13/13 0.365 13/13 0.305 12/13 0.351 13/13

Statistically significant differences were bold typed.

A dagger (†) indicates a p-value < 0.016.

We indicated with nDCi→j the mean value of the normalized Directed Coherence; with s.d. the standard deviation of nDC; with Gi→j the Gain of the transfer function

from i to j; with Nθ /N the rate of the subjects showing nDC above threshold.

as much information as possible during the blinking events, a
well-known limitation in the analysis of PD; (2) we explored PD
information content through classical statistical indices; (3) we
performed a spectral analysis of the signal, comparing the results
with respect some classic autonomic indices from RR signal and
Respiratory signal; (4) we conducted a preliminary spectral anal-
ysis at higher frequencies, from 0.45 to 5 Hz; (5) we performed

a Coherence analysis to explore the mutual influences of PD, RR
signal and RESP during autonomic control.

The first step was to provide an algorithm for the recon-
struction of the PD signal during blinking events and move-
ment artifacts. The adopted procedure allowed to analyze PD
at high frequencies, hence exploring the information carried by
fast oscillations, and to improve the analysis of the signal at
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FIGURE 7 | Mean values and standard errors of GResp→PD (at the top, in

blue) and of GRESP→RR (at the bottom, in red).

FIGURE 8 | Means and standard errors of HFPD and GRESP→PD for all

the experimental conditions. We have in gray “Baseline,” in yellow
“Happiness,” in red “Anger” and in blue “Sadness”.

Table 7 | Sensitivity (Se = TPR) and Specificity (Sp = 1-FPR) of each

feature when comparing “Baseline” (B) with respectively

“Happiness” (H), “Anger” (A) and “Sadness” (S).

Se, Sp B-H B-A B-S

HFHRV norm 0.538, 0.923 0.615, 0.846 0.769, 0.692

LF/HFHRV 0.308, 0.846 0.385, 0.387 0.077, 1.000

HFPD 0.461, 0.692 0.615, 0.769 0.538, 0.846

VHF[2.5–5] 0.769, 0.461 0.615, 0.769 0.615, 0.615

GRESP→PD 0.461, 0.385 0.615, 0.615 0.692, 0.385

Lin. Comb. PD 0.769, 0.538 0.769, 0.692 0.692, 0.615

low frequencies, providing an estimation of the missing data as
close as possible to the underlying dynamics of the observable
data. From the reconstructed signals we computed time domain
aggregate features. We observed an overall decrease in variability

during triggering events. Although it was not sufficient to sig-
nificantly distinguish emotional conditions from “Baseline,” this
trend is in agreement with a common behavior of other physio-
logical signals during psychophysiological events (Caldirola et al.,
2004; Rainville et al., 2006).

As firstly hypothesized by Borgdorff (1975) and then sup-
ported in successive studies (Yoshida et al., 1994; Calcagnini et al.,
2000), ANS modulation of PD dynamics is reflected in oscillations
classically referred to the autonomic control of cardiorespira-
tory activity. Moreover, these oscillations could be linearly and
mutually coupled to cardiorespiratory signals, which in turn are
related to ANS dynamics. The autonomic control on the pupil-
lary system might be driven by similar autonomic pathways that
modulate heartbeat dynamics, but this does not exclude that the
cardiorespiratory activity itself might be reflected on PD and
might influence PD dynamics, either strengthening or inhibiting
the more direct ANS influence on PD.

In this work we therefore explored the spectral components of
PD in frequency ranges classically related to the ANS control of
cardiorespiratory activity, i.e., LF and HF, computing widespread
features. The observed trends of PD and RR series features con-
firm similar aggregate behavior for PD and RR signal. These
patterns reflects similar autonomic modulation at HRV frequency
bands for both pupillary and cardiovascular systems during emo-
tional triggering events. The analysis of Coherence clarifies the
nature of this behavior.

The results of Coherence analysis support the idea of a cou-
pling between PD and cardiorespiratory activity, mostly for the
respiratory influence on PD. In particular, results regarding the
Coherence in the HF band are consistent with previous find-
ings (Calcagnini et al., 2000) both in terms of Coherence values
and rate of Coherence values above statistical threshold, and con-
firm the hypothesis that a rhythmic impulse coming from the res-
piratory centers drives fluctuations in a wide range of organs, and
among them the pupillary system (Borgdorff, 1975). This hypoth-
esis is further confirmed by high values of nDCRESP→PD and a
high number of subject showing nDCRESP→PD above threshold.
We were not able to establish a specific directionality in the cou-
pling between PD and RR in the HF band. On the other hand, for
RESP and PD the overall value of Coherence and nDC indicate
that there is a relevant linear coupling, and that a similar auto-
nomic modulation is driven by respiratory rhythms on both PD
and HRV. These results, along with the results from the spectral
analysis, support the hypothesis that there is a direct influence
of RESP to PD. The nature of this connection might be differ-
ent from the coupling between RESP and HRV directly affecting
different autonomic pathways.

The low value of Coherence and nDC, as well as the unclear
directionality between HRV and PD at LF could be explained by
different hypotheses. Although a large part of the power content
of PD is at low frequencies, these dynamics might not reflect auto-
nomic control on the pupillary system, or at least an autonomic
response to particular triggering events such as emotionally char-
acterized events. Moreover, these dynamics show a weak linear
coupling with HRV LF rhythms, as suggested by Calcagnini et al.
(2000). A second hypothesis is that in these particular experimen-
tal conditions the sympathetic system is not stressed enough to
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evoke a clear and visible response. A further hypothesis to take
into account is that the presence of other sources of fluctuations,
such as hippus and accommodation (Charman and Heron, 2007),
which could overlap in the LF band, may have created distortion
phenomena difficult to quantify and eliminate.

As further outcome, we explored PD dynamics at higher fre-
quencies (from 0.45 to 5 Hz). These oscillations have trends
comparable to those in PD total variance and HF power. The
highly significant differences between “Baseline” and “Anger” and
the similar behavior of the signal at higher frequencies support
the hypothesis of a direct central autonomic control on PD, which
reflects also the response of the ANS to emotional triggering
events. The HFPD and VHFPD components provides character-
izing features, which might lead to propose PD-based markers in
stressful, emotional or arousing events. For this reason, it would
be interesting to explore more deeply the role of the central auto-
nomic network as reflecting in PD responses during emotional
events.

In addition, to deepen the classification prospect of PD fea-
tures might improve nowaday classification performances and
candidate PD as a new important signal in recognition and clas-
sification of emotional conditions in different research fields. In
particular, the possibility to evaluate affective states from PD
might lead to interesting developments for communication appli-
cations: as a contactless autonomic correlate, PD could cover a

major role in the detection of arousing events elicited by audio-
visual contents.

The results of our analysis show that the differences between
the experimental conditions were reflected on PD indices and
confirmed by the level of sensitivity and specificity of these indices
in distinguishing a baseline state from the emotional events. For
this reason, classification performances of these new indices need
to be explored in future works. The influence of RESP to PD
and the weak or absent linear coupling between HRV and PD
in the LF band are other relevant outcomes of this work and
confirm the findings previously reported in the literature. An
important advance would be to evaluate the effect of known and
controlled ANS changes on RR intervals, RESP and PD cou-
pling. Importantly, GRESP→PD seems to be related to the valence
of the emotion, although further confirmations are required. In
addition, VHF[2.5–5] results might indicate that the ANS modu-
lates PD at higher frequencies, and that these oscillations might
be a reflection of central autonomic activity directly influenc-
ing PD. Exploring and studying in depth higher frequencies of
PD, as well as its very LF oscillations such as hippus, is another
future developments of this work. Some other major future direc-
tions include the study of non-linearity and non-stationarity of
PD, possibly estimating time varying monovariate and multi-
variate indices through stochastic modeling of the signal (e.g.,
multivariate point-process models).
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